
CHAPTER 2.2

CONTROL STRUCTURES (ITERATION)

Dr. Shady Yehia Elmashad

Outline

1. C++ Iterative Constructs
2. The for Repetition Structure
3. Examples Using the for Structure
4. The while Repetition Structure
5. Examples Using the while Structure
6. Formulating Algorithms (Counter-Controlled

Repetition)
7. Formulating Algorithms with Top-Down, Stepwise

Refinement
8. Nested control structures
9. Essentials of Counter-Controlled Repetition
10. The do/while Repetition Structure
11. The break and continue Statements

1. C++ Iterative Constructs

• There are three constructs:

while statement

 for statement

do-while statement

2. The for Repetition Structure

The general format when using for loops is

for (initialization;

LoopContinuationTest; increment){

statement(s) }

Example:
for(int counter = 1; counter <= 10; counter++){

cout << counter << endl;}

Prints the integers from one to ten No
semicolon
after last
statement

2. The for Repetition Structure

• Syntax
for (ForInit ; ForExpression; PostExpression)

Action

• Example
for (int i = 0; i < 3; ++i) {

cout << "i is " << i << endl;

}

ForExpr

Action

true false

ForInit

PostExpr

Evaluated once

at the beginning

of the for

statements's

execution
The ForExpr is

evaluated at the

start of each

iteration of the

loop

If ForExpr is

true, Action is

executed

After the Action

has completed,

the

PostExpression

is evaluated

If ForExpr is

false, program

execution

continues with

next statement

After evaluating the

PostExpression, the next

iteration of the loop starts

2. The for Repetition Structure

• For loops can usually be rewritten as while loops:
initialization;

while (loopContinuationTest){

statement

increment;

}

• Initialization and increment as comma-separated lists
for (int i = 0, j = 0; j + i <= 10; j++, i++)

cout << j + i << endl;

3. Examples Using the for Structure

Sum the numbers from 0 to 10

#include <iostram.h>
void main ()
{
int sum = 0 ;

for (int i = 0; i < = 10; i++)
{
sum = sum + i ;
}

cout << “ Summation = “ << sum ;
}

Summation =

3. Examples Using the for Structure

Sum the even numbers from 0 to 100

Summation =

#include <iostram.h>
void main ()
{
int sum = 0 ;

for (int i = 0; i < = 100; i+=2)
{
sum = sum + i ;
}

cout << “ Summation = “ << sum ;
}

3. Examples Using the for Structure

Sum the odd numbers from 0 to 100

Summation =

#include <iostram.h>
void main ()
{
int sum = 0 ;

for (int i = 1; i < = 100; i+=2)
{
sum = sum + i ;
}

cout << “ Summation = “ << sum ;
}

3. Examples Using the for Structure

Printing characters depending on user entry

#include <iostram.h>
void main ()
{
int n ; char ch;
cout << “ Please enter the character: “ ;
cin >> ch ;
cout << “ Please enter the number of
repetition: “ ;
cin >> n ;

for (int i = 0; i < n ; i++)
cout << ch;

}

4. The while Repetition Structure

Logical expression that determines

whether the action is to be executed

while (Expression) Action

Action to be iteratively

performed until logical

expression is false

4. The while Repetition Structure

Expression

Action

true false

Expression is

evaluated at the

start of each

iteration of the

loop

If Expression is

true, Action is

executed If Expression is

false, program

execution

continues with

next statement

While Semantics

4. The while Repetition Structure

• Repetition structure
 Programmer specifies an action to be repeated while

some condition remains true

 Psuedocode

while there are more items on my shopping list

Purchase next item and cross it off my list

 while loop repeated until condition becomes false.

• Example
int product = 2;

while (product <= 1000)

product = 2 * product;

4. The while Repetition Structure

• Flowchart of while loop

product <= 1000 product = 2 * product
true

false

5. Examples Using the while Structure

Printing characters depending on user entry

#include <iostram.h>
void main ()
{
int n, i = 0 ; char ch;
cout << “ Please enter the character: “ ;
cin >> ch ;
cout << “ Please enter the number of
repetition: “ ;
cin >> n ;

while (i < n) {
cout << ch ;
i ++ ;
}

}

5. Examples Using the while Structure

The summation of the numbers squared from 0 to 10

#include <iostram.h>
void main ()
{
int sq_sum = 0, x = 0, y ;

while (x < = 10) {
y = x * x ;
sq_sum = sq_sum + y ;
x ++ ;
}

cout << “The summation of the
numbers squared from 0 to 10 “ <<
sq_sum ;
}

5. Examples Using the while Structure

Factorial of a number

#include <iostram.h>
void main ()
{
int n, fact = 1 ;
cout << “ Please enter a number “ << endl ;
cin >> n ;

while (n > 0) {
fact = fact * n ;
n -- ;
}

cout << “ The factorial of your number is “
<< fact ;
}

8. Nested Control Structures

• Problem:
A college has a list of test results (1 = pass, 2 = fail) for 10
students. Write a program that analyzes the results. If
more than 8 students pass, print "Raise Tuition".

• We can see that
 The program must process 10 test results. A counter-

controlled loop will be used.

 Two counters can be used—one to count the number of
students who passed the exam and one to count the
number of students who failed the exam.

 Each test result is a number—either a 1 or a 2. If the
number is not a 1, we assume that it is a 2.

• Top level outline:
Analyze exam results and decide if tuition should be raised

8. Nested Control Structures

• First Refinement:
Initialize variables

Input the ten quiz grades and count passes and
failures

Print a summary of the exam results and decide if
tuition should be raised

• Refine
Initialize variables

to

Initialize passes to zero

Initialize failures to zero

Initialize student counter to one

8. Nested Control Structures

• Refine
Input the ten quiz grades and count passes and failures

to

While student counter is less than or equal to ten
Input the next exam result

If the student passed

Add one to passes
Else

Add one to failures

Add one to student counter

• Refine
Print a summary of the exam results and decide if tuition should be raised

to

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition”

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

22

1. Initialize variables

2. Input data and

count passes/failures

1 // Fig. 2.11: fig02_11.cpp

2 // Analysis of examination results

3 #include <iostream>

4

5 using std::cout;

6 using std::cin;

7 using std::endl;

8

9 int main()

10 {

11 // initialize variables in declarations

12 int passes = 0, // number of passes

13 failures = 0, // number of failures

14 studentCounter = 1, // student counter

15 result; // one exam result

16

17 // process 10 students; counter-controlled loop

18 while (studentCounter <= 10) {

19 cout << "Enter result (1=pass,2=fail): ";

20 cin >> result;

21

22 if (result == 1) // if/else nested in while

23 passes = passes + 1;

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

23

3. Print results

Program Output

24 else

25 failures = failures + 1;

26

27 studentCounter = studentCounter + 1;

28 }

29

30 // termination phase

31 cout << "Passed " << passes << endl;

32 cout << "Failed " << failures << endl;

33

34 if (passes > 8)

35 cout << "Raise tuition " << endl;

36

37 return 0; // successful termination

38 }

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 2

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Enter result (1=pass,2=fail): 1

Passed 9

Failed 1

Raise tuition

8. Nested Control Structures
Accept 10 numbers from the user & print the max. one

#include <iostram.h>
void main ()
{
int num, largest = 0 ;

for (int i = 0; i < 10; i ++) {
cout << “ Enter a number: “ ;
cin >> num ;

if (num > largest) {
largest = num ;
}

}
cout << “ The largest number is “ << largest
<< endl ;
}

